Two Distinct Forms of Long-Term Depression Coexist in CA1 Hippocampal Pyramidal Cells

نویسندگان

  • Stéphane H.R Oliet
  • Robert C Malenka
  • Roger A Nicoll
چکیده

Two distinct forms of long-term depression (LTD), one dependent on the activation of NMDA receptors (NMDARs) and the other dependent on the activation of metabotropic glutamate receptors (mGluRs), are shown to coexist in CA1 hippocampal pyramidal cells of juvenile (11-35 day-old) rats. Both forms were pathway specific and required membrane depolarization and a rise in postsynaptic Ca2+. mGluR-LTD, but not NMDAR-LTD, required the activation of T-type Ca2+ channels, group 1 mGluRs, and protein kinase C, while NMDAR-LTD, but not mGluR-LTD, required protein phosphatase activity. NMDAR-LTD was associated with a decrease in the size of quantal excitatory postsynaptic currents, whereas for mGluR-LTD there was no change in quantal size, but a large decrease in the frequency of events. NMDAR-LTD, but not mGluR-LTD, reversed NMDAR-dependent long-term potentiation, and NMDAR-LTD was unaffected by prior saturation of mGluR-LTD. These findings indicate that NMDAR-LTD and mGluR-LTD are mechanistically distinct forms of synaptic plasticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Coenzyme Q10 (ubiquinone) on hippocampal CA1 pyramidal cells following transient global ischemia/reperfusion in male wistar rat

Ischemia/Reperfusion (I/R)-induced cerebral injury has been reported as a leading cause of deathand long-term disabilities. Hippocampus is an area which is more sensitive to be affected by I/Rand hypoxic conditions. Coenzyme Q10 is a strong antioxidant which plays a role in membranestabilization. This study aims to investigate the possible role of CoQ10 in ameliorating thehistomorphological cha...

متن کامل

Coexistence of Multiple Types of Synaptic Plasticity in Individual Hippocampal CA1 Pyramidal Neurons

Understanding learning and memory mechanisms is an important goal in neuroscience. To gain insights into the underlying cellular mechanisms for memory formation, synaptic plasticity processes are studied with various techniques in different brain regions. A valid model to scrutinize different ways to enhance or decrease synaptic transmission is recording of long-term potentiation (LTP) or long-...

متن کامل

Long-term potentiation in distinct subtypes of hippocampal nonpyramidal neurons.

We have investigated NMDA receptor-dependent long-term potentiation (LTP) in distinct subtypes of nonpyramidal neurons of the CA1 hippocampus using induction protocols that permitted the differentiation between a direct form of LTP and plasticity resulting simply from the "passive propagation" of LTP occurring on CA1 pyramidal neurons. Two types of stratum (st.) oriens/ alveus interneurons rece...

متن کامل

GABABR-Dependent Long-Term Depression at Hippocampal Synapses between CB1-Positive Interneurons and CA1 Pyramidal Cells

Activity induced long lasting modifications of synaptic efficacy have been extensively studied in excitatory synapses, however, long term plasticity is also a property of inhibitory synapses. Inhibitory neurons in the hippocampal CA1 region can be subdivided according to the compartment they target on the pyramidal cell. Some interneurons preferentially innervate the perisomatic area and axon h...

متن کامل

Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation.

Long-term potentiation (LTP) and long-term depression (LTD), two prominent forms of synaptic plasticity at glutamatergic afferents to CA1 hippocampal pyramidal cells, are both triggered by the elevation of postsynaptic intracellular calcium concentration ([Ca2+]i). To understand how one signaling molecule can be responsible for triggering two opposing forms of synaptic modulation, different pos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 18  شماره 

صفحات  -

تاریخ انتشار 1997